Conceptualization, implementation, and commissioning of realtime analysis in the High Level Trigger of the LHCb experiment

Vladimir V. Gligorov, CNRS/LPNHE Habilitation a diriger les recherches, May 14th 2018

Eastbound and down: an introduction to real-time analysis

Q: What is real-time?

A : Any processing of data before it is permanently recorded

STORAGE

DEV/NULL

Why do we need to process data before recording it?

Why do we need to process data before recording it?

Because HEP detectors produce too much data to store

Data volumes @ LHC after real-time processing

Real-time processing reduces data by 3-5 orders of magnitude

Distinguish fixed & variable latency, selection & compression

Distinguish fixed & variable latency, selection & compression

Distinguish fixed & variable latency, selection & compression

Distinguish fixed & variable latency, selection & compression

Distinguish fixed & variable latency, selection & compression

Fixed latency processing

Typically used when processing controls detector readout

DATA OUT

Variable latency processing

Typically used when data has already been read out

DATA OUT

Traditional real-time processing, or "triggering"

Driven by fixed-latency selection, analysis on efficiency plateau

2804 bunch/beam 7 TeV (7x10¹² eV)

3

Modern real-time processing, or "real-time analysis"

proton - (anti)proton cross sections 10[°] 10[°] 10⁸ 10⁸ HE LHC 10⁷ LHC 10⁷ Tevatron 10⁶ 10⁶ ' 10⁵ ⁻ິທ **10**⁵ **LHCb** ัย **10**⁴ **10**⁴ 0³³ 10³ 10³ σ_{jet}(E_T ^{jet} > √s/20) 10² 10² (qu σ_{w} 10 10¹ þ σ, **り** 10⁰ $(E_{T}^{jet} > 100 \text{ GeV})$ 10[°] sec **10**⁻¹ **10**⁻¹ events 10⁻² 10⁻² 10⁻³ **10**⁻³ σ **10**⁻⁴ **10**⁻⁴ _s(M_H=120 GeV) 10⁻⁵ **10**⁻⁵ 200 GeV 10⁻⁶ **10**⁻⁶ 500 GeV WJS2012 10⁻⁷ 10⁻⁷ 10 0.1 1 √s (TeV)

Modern real-time processing, or "real-time analysis"

LHC increases its luminosity by generating multiple pp interactions in a single bunch crossing Fixed latency triggers select bunch crossings Beyond some luminosity, all bunch crossings contain signal. Select interactions, not bunch crossings => real-time analysis. No possibility to work on efficiency plateau!

Largely compression not selection, variable latency by necessity

Before we proceed... credit where it is due

The work described in this habilitation is the result of an enormous team effort by many of my LHCb colleagues

I was lucky enough to coordinate a particularly brilliant High Level Trigger team, who came together ex-nihilo to make real-time analysis possible despite the lack of any funding agency support for our work.

Good ideas are cheap, teams which are able to bring those good ideas to life are very hard to find. I hope that this won't be the last challenge we tackle together.

Acknowledgements

During the years in which the real-time analysis described in this thesis was conceived, implemented, and commissioned I had the priviledge to work in the High Level Trigger team of LHCb, and I suspect many years will pass before I am again fortunate enough to collaborate with so many brilliant and generous people at once. None of the work described in this HDR would have been possible without them, or without the reconstruction, alignment, calibration, online, and offline computing teams of LHCb, who embraced the idea of realtime analysis and brought it to life. You know who you are, this work is ours, and I simply hope to have done it justice in the writeup.

That being said, I have used code written by my colleagues to produce many of the plots in this document, and I wish to acknowledge those cases more specifically. The results presented in the "haystack of needles" chapter, which form the historical physics case for real-time analysis in LHCb, were produced in collaboration with Conor Fitzpatrick, who wrote all the code. Similarly, Mike Sokoloff wrote the code used to produce most of the plots in the "making time less real" chapter. The analysis of charm cross-sections was done in collaboration with a large number of colleagues, and while I have highlighted some of my own technical contributions most of the scripts and code used to produce the results were written by others, in particular Christopher Burr, Dominik Mueller, Alex Pearce, and Patrick Spradlin. A special thank you is due Alex and Dominik for maintaining a reproducible version of the analysis framework such that I could rerun this code more than two years after the fact and remake most of the analysis plots myself.

I must also pay special respect to two people who really went above and beyond in making real-time analysis possible in LHCb. Silvia Borghi led the development and deployment of the real-time detector alignment and calibration, and has spent much of her evenings since 2015 perfecting every detail and training the next generation of LHCb reconstruction and calibration experts. Provela si ekipu kroz nevreme pravo, šta da ti kažem sem drugarice bravo!¹ And Gerhard Raven... is simply the *nec plus ultra* of real-time data processing in High Energy Physics. Gerhard wrote much if not most of the code behind LHCb's High Level Trigger, and laid the foundations on which all the work described in this HDR stands. Ave maestro.

Before we proceed... credit where it is due

The work described in this habilitation is the result of an enormous team effort by many of my LHCb colleagues

I was lucky enough to coordinate a particularly brilliant High Level Trigger team, who came together ex-nihilo to make real-time analysis possible despite the lack of any funding agency support for our work.

Good ideas are cheap, teams which are able to bring those good ideas to life are very hard to find. I hope that this won't be the last challenge we tackle together.

Acknowledgements

During the years in which the real-time analysis described in this thesis was conceived, implemented, and commissioned I had the priviledge to work in the High Level Trigger team of LHCb, and I suspect many years will pass before I am again fortunate enough to collaborate with so many brilliant and generous people at once. None of the work described in this HDR would have been possible without them, or without the reconstruction, alignment, calibration, online, and offline computing teams of LHCb, who embraced the idea of realtime analysis and brought it to life. You know who you are, this work is ours, and I simply hope to have done it justice in the writeup.

That being said, I have used code written by my colleagues to produce many of the plots in this document, and I wish to acknowledge those cases more specifically. The results presented in the "haystack of needles" chapter, which form the historical physics case for real-time analysis in LHCb, were produced in collaboration with Conor Fitzpatrick, who wrote all the code. Similarly, Mike Sokoloff wrote the code used to produce most of the plots in the "making time less real" chapter. The analysis of charm cross-sections was done in collaboration with a large number of colleagues, and while I have highlighted some of my own technical contributions most of the scripts and code used to produce the results were written by others, in particular Christopher Burr, Dominik Mueller, Alex Pearce, and Patrick Spradlin. A special thank you is due Alex and Dominik for maintaining a reproducible version of the analysis framework such that I could rerun this code more than two years after the fact and remake most of the analysis plots myself.

I must also pay special respect to two people who really went above and beyond in making real-time analysis possible in LHCb. Silvia Borghi led the development and deployment of the real-time detector alignment and calibration, and has spent much of her evenings since 2015 perfecting every detail and training the next generation of LHCb reconstruction and calibration experts. Provela si ekipu kroz nevreme pravo, šta da ti kažem sem drugarice bravo!¹ And Gerhard Raven... is simply the *nec plus ultra* of real-time data processing in High Energy Physics. Gerhard wrote much if not most of the code behind LHCb's High Level Trigger, and laid the foundations on which all the work described in this HDR stands. Ave maestro.

You enjoyed this work? Great, now hire the rest of the team.

Mise-en-scène : the lHCb detector and analysis methodology

The LHCb detector at the LHC

Forward spectrometer optimized for precision physics

Reconstruction philosophy and role of subdetectors

Optimized for charged particles w/some neutral capability

Tracker : chaged particle reconstruction

Particle identification : RICH, Muon,

Neutral reconstruction : ECAL

Charged particle reconstruction

Vertexing performance

Particle identification @ LHCb

In addition to "usual" muon system and ECAL + preshower based electron identification, LHCb can separate charged hadrons using two Ring Imaging Cherenkov (RICH) detectors.

RICH detectors also contribute to electron/muon identification : in practice, all subdetector information is combined using neural networks to achieve the best possible particle identification.

Made possible by forward layout, shields photodetectors

Real-time data processing strategy during Run I

Largely fixed+variable latency selection

Ability to buffer events within High Level Trigger developed by online team during Run I, enabled real-time analysis in Run II

LHCb physics programme

Subject	Analyses	Historical?
b-hadrons	Searches for rare decays	
	Time-integrated CP violation	
	Time-dependent CP violation	VES
	Dalitz measurements	1123
	Angular measurements	
	Radiative decays	
	Searches for forbidden decays	NO
c-hadrons	Searches for rare decays	
	Searches for forbidden decays	
	Time-integrated CP violation	NO
	Time-dependent CP violation	
	Dalitz measurements	
s-hadrons	Searches for rare decays	NO
	Searches for forbidden decays	NO
	Hadron masses	
	Hadron quantum numbers	
Speetroscopy	Penta and tetraquark searches	NO
Spectroscopy	Hadron differential cross-sections	
	Exclusive production of hadrons	
	Hadron widths or lifetimes	YES
	EW boson differential cross-sections	
Electroweak and top	EW boson forward-backward asymmetries	NO
	Single and double-top differential cross-sections	NO
Exotica	Direct searches for new particles	NO
Ion and fixed target physics	Hadron differential cross-sections	NO
	EW boson differential cross-sections	NO

Greatly expanded since 2010 thanks to tr

•		
ndder	tlayihi	

LHCb analysis methodology and role of calibration samples

Trigger Efficiency Tag-and-probe calibration	Tracking efficiency Tag-and-probe		
method exists & widely use	Existing	Developing	Та
	μ	е,п,К,р	ex sp

Data driven efficiency calibration key to precision physics

Particle identification Tag-and-probe

Tag-and-probe calibrations exist for all charged particle species and for π^0/γ , with new sources added over time to improve coverage

A haystack of needles: The necessity of real-time analysis in UICb

Why does LHCb not run at ATLAS/CMS luminosities today?

√s (TeV)

Fixed-latency trigger only effective up to around 4.1032

Signal and data rates at LHCb in Run 2

Already greatly exceeds allowed O(10kHz) bandwidth

Signal and data rates at LHCb in the upgrade

Plus data volume increases quadratically because of pileup

From selection to compression : real-time analysis

Most physics measurements require only a signal candidate and information about the specific pp collision which produced it \rightarrow the rest is pileup The higher the luminosity, the larger the fraction of event data caused by pileup Hence create more room for signal by compressing & removing pileup in real-time!

Requires the ability to carry out precise pileup suppression

Run 2 as a proving ground for the detector upgrade

Run 2 as a proving ground for the detector upgrade

Switch to real-time analysis in Run 2 to learn for the upgrade

A cunning plan: the requirements for real-time analysis

The necessary ingredients of a precision physics measurement

Monitoring & Data Quality
Addressing the requirements by splitting the HLT

Splitting the HLT enables the parallelization of alignment&calib

Aligning the detector in real time

Automated tracker alignment performed once per fill (in 8 min)

Fully reconstructing the detector in real time

No possibility of performing a full reconstruction at the 1 MHz rate coming out of the L0 trigger, therefore

- Optimize the disk buffer between HLT1 and HLT2 to 1) create time for the full offline reconstruction in HLT2
- 2) Optimize the vertex detector reconstruction so it could run with offline quality in HLT1
- 3) Show that the HLT2 tracker reconstruction can be factorized in particle kinematics, making the HLT1 reconstruction the high momentum subset of HLT2

Enabled by putting the disk buffer between HLT1 and HLT2

Calibrating the detector in real time

Automated RICH and straw-tube tracker alignment

Calibrating the calorimeter in real time

Automated occupancy-based calorimeter ageing correction

1200 1400 1600 recorded luminosity [pb⁻¹]

LHCb preliminary 2016

Selecting calibration samples in real time

Alignment/Calibration task	Sample	Size
VELO	random triggers	$\mathcal{O}(1$
Tracker	$D^0 \rightarrow K^- \pi^+$, high momentum tracks	$\mathcal{O}(2$
Tracker vertical alignment	magnet off tracks	5 - 10
Muon system	$J/\psi \rightarrow \mu^+\mu^-$	$\mathcal{O}(2$
RICH mirrors	equal occupancy triggers	$\mathcal{O}(3)$
RICH image	random triggers	
RICH refractive index	random triggers	
CALO coarse	random triggers	$\mathcal{O}(1$
CALO fine	$\pi^0 \rightarrow \gamma \gamma$	

Species	Soft	Hard
e^{\pm}		$J/\psi \rightarrow e^+e^-$
μ^{\pm}	$D_s^+ \rightarrow \mu^+ \mu^- \pi^+$	$J/\psi { ightarrow}\mu^+\mu^-$
π^{\pm}	$K_S^0 \rightarrow \pi^+ \pi^-$	$D^{*+} \rightarrow D^0 \pi^+, \ D^0 \rightarrow K^-$
K^{\pm}	$D_s^+ \rightarrow K^+ K^- \pi +$	$D^{*+} \rightarrow D^0 \pi^+, \ D^0 \rightarrow K^-$
p^{\pm}	$\Lambda \rightarrow p\pi^-$	$\Lambda {\rightarrow} p\pi^-, \Lambda_c^+ {\rightarrow} pK^-\pi^+$

Must select all tag-and-probe calibration samples in real time!

of sample 00k) events 00k) events 0M events 50k) events M) events

00k) events

 $\pi + \pi + \pi$

Selecting signal samples in real time

During Run I, we already had clean fully reconstructed charm samples with good resolution coming out of the trigger

Moving to full real-time analysis, need to select many more signal channels, add background and control channel selections \rightarrow 100s of selections!

Controlling the timing of making charged particle combinations becomes crucial, enabled by having offline-quality particle identification information at start of HLT2

Basic ability already demonstrated in Run I, PID key to timing

Monitoring and software validation

For 2015 ad-hoc, git and software validation crucial later

htemp Entries 253 Mean 1861 RMS 27.04 χ^2 / ndf 45.98 / 70 p0 5.48 ± 0.93 1864 ± 1.5 p1 p2 9.365 ± 1.630 p3 3.879 ± 8.020 p4 -0.001251 ± 0.004305 1920 1880 1900 $D^0 \rightarrow K^- \pi^+$ mass [MeV]

A la recherche du temps reel: optimizing the cascade buffers

What is a cascade buffer?

Bigger data volume

Reconstruct high P_T leptons

Reconstruct pp vertices & select displaced leptons

Reconstruct other charged particles & build B candidate

Build particle identification information & purify selection

A staged data reduction using increasingly complex algorithms

More complex processing

What cascade did we optimize?

Balance retention of HLT1 against processing time of HLT2

Optimization of the Run 2 LHCb cascade buffer

Use Run I LHC fill structure to simulate disk buffer usage

Optimization of the Run 2 LHCb cascade buffer

Use simulation to ensure robustness if timing estimates wrong

Optimization of the Run 2 LHCb cascade buffer

Use simulation to ensure robustness if LHC overperformed

Factorizing the LHCb reconstruction

Remember, LHCb does not work on an efficiency plateau

Factorizing the LHCb reconstruction

Key objective : make it possible for HLT2 to run the full offline reconstruction

However for precision physics we do not work on an efficiency plateau : must understand in detail efficiency of HLT1 with respect to HLT2

Reoptimize tracking sequence so that HLT1 almost perfectly selects a highmomentum subset of tracks found by HLT2. This factorization of the tracking minimizes systematic uncertainties without losing absolute performance.

Crucial to ensure HLT1 "fast" reconstruction a subset of HLT2

I nous faut uc procédure: persisting and validating the data

Persisting analysis-quality data in real time

Enabled trigger to persist data in analysis format (huge job)

Extra event information

What exactly is a signal? The role of "event" information

not combinatorial background?

quark-fragmentation chain

Vital for spectroscopy, searches (isolation), flavour tagging

- Information about particles which are not directly part of the signal but allow us to infer some information about it, for example
 - Isolation : how likely is this real signal and
 - Flavour tagging : infer production flavour of signal based on particles produced in same
 - **Spectroscopy : search for excited states by** combining Cabibbo-favoured beauty/charm decays with tracks from same pp interaction

Commissioning and validating the Run 2 analysis data

A lot of work comparing trigger-level and offline variables...

Evolution of data persistence in Run 2 and the LHCb upgrade

Goal : enable each analysis to save its own custom "event"

Today : mainly additional particles in event, ability to associate isolation variables to the signal

Tomorrow : any subset of other reconstructed objects or raw detector data required for a given analysis

Necessary for the upgrade where most analyses should be done in real time, takes pileup suppression aspect to its logical conclusion.

It is not all relative: measuring occ in real time

Why measure charm cross-sections?

Pragmatic :

Proper validation of new analysis model requires full review process and publication

New collider energy, cross-sections immediately publishable

In addition, absolute cross-sections extremely sensitive to control of detector effects, validate all aspects of calibration

Physics :

hadronization models

Understand production of dominant

Constrain production of high-energy induced charm hadron production

Marriage of pragmatic and physics motivation

Validate MC generator tunings and QCD

background to rare Higgs/EW boson decays

atmospheric neutrinos from cosmic-ray

Signal selection

Random selection at hardware trigger level to avoid having to understand calorimeter

Single displaced particle at HLT1

Full signal reconstruction at HLT2

Only measured D^0 , D^+ , D_s , and D^{*+} for the first paper, left baryons and other excited charm hadrons for future papers

Systematics limited so no BDTs, just kinematics&displacement

မ္လ⁴⁵⁰⁰⁰ 10000E 235000E ပိဒ္ဒ၀၀၀၀န 25000E 20000E 15000E 10000E 5000 f820 1840 1880 1860 1900 $D^+ \rightarrow K^- \pi^+ \pi^+$ mass (MeV) Candidates 4000 3200 3000 2500E 2000E 1500E 1000E 500E 1920 2000 1940 1980 1960 $D_s^+ \rightarrow \phi(1020) \pi^+ \text{ mass (MeV)}$

Two stage fit to D mass and impact parameter χ^2

Comb. bkg. 10 0 5 $\ln(\chi^2_{\rm IP})$

Why a two stage fit?

Because mass & impact parameter χ^2 are correlated for signal

Efficiency correction

Kinematics from MC, PID and reconstruction corrected w/calib

	Uncertainties (%)			Correlations		
	D^0	$\mid D^+$	$\mid D_s^+$	$\mid D^{*+}$	bins	modes
MC stat.	1-26	1-39	1-55	1-23	0	0
MC modelling	1	1	0.2	0.9	0	0
Fit model	1-6	1-5	1-2	1-2	0	0
Tracking	3-10	3-14	4-14	5-11	90-100	90-100
PID cal.	0-2	0-1	0-2	0-1	0-100	0-100
PID binning	0-44	0-10	0-20	0-15	100	100
\mathcal{BR}	1.2	2.1	5.8	1.5	100	0-95
Luminosity	3.9			100	100	

Dominated by luminosity and tracking efficiency systematic

Results and discussion

Main result, double differential cross-sections

HCb repent! : errors in real-time analyses and their implications

From real-time analysis to delayed errata

Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV

[to restricted-access page]

INFORMATION

LHCB-PAPER-2015-041

PH-EP-2015-272

ARXIV:1510.01707 [PDF]

(SUBMITTED ON 06 OCT 2015)

JHEP03(2016)159 JHEP09(2016)013 JHEP05(2017)074

INSPIRE 1396331

ERRATA JHEP 09 (2016) 013 JHEP 05 (2017) 074

OOLS

CITED 111 TIMES

GET BIBTEX

HEPDATA

CONTACT

EDITORIAL BOARD EMAIL

Abstract

Production cross-sections of prompt charm mesons are measured with the first data from pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 4.98 ± 0.19 pb⁻¹ collected by the LHCb experiment. The production cross-sections of D^0 , D^+ , D_s^+ , and D^{*+} mesons are measured in bins of charm meson transverse momentum, p_T , and rapidity, y, and cover the range $0 < p_T < 15 \,\text{GeV}/c$ and 2.0 < y < 4.5. The inclusive cross-sections for the four mesons, including charge conjugation, within the range of $1 < p_T < 8 \text{ GeV}/c$ are found to be

> $\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \,\mu b$ $\sigma(pp \rightarrow D^+X) = 834 \pm 2 \pm 78 \,\mu b$ $\sigma(pp \rightarrow D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$ $\sigma(pp \rightarrow D^{*+}X) = 784 \pm 4 \pm 87 \,\mu b$

where the uncertainties are due to statistical and systematic uncertainties, respectively

Figures and captions

Distributions for selected $D^0 \rightarrow K^-\pi^+$ candidates: (left) $K^-\pi^+$ invariant mass and (right) $\ln \chi_{1p}^2$ for a mass window of $\pm SI20$ we can be nominal D^0 mass. The sum of the simultaneous likelihood fits in each (p_T, y) bin is shown, with components as indicated in the legends.

Ironically nothing to do with the real-time part...

The first, specific, erratum

Required soft pion from $D^{*+} \rightarrow D^0 \pi^+$ decay chain to be in acceptance for D⁰ cross-section

Straightforward bug in acceptance calculation

The second, general, erratum

Mismodelled radiation damage impact on VELO hit efficiency

The second, general, erratum

We should have just regenerated the MC but we thought nah, we can calibrate this away, save the computing resources... as Jim Libby once taught me (paraphrasing somewhat), don't try to be clever if you can brute-force a problem.

Turns out that the calibration samples did not correct for it

A more detailed look at in-bin variations

Difference in signal/calibration kinematic variation within bins

Not as many as you might think

Was this an embarassing episode? Definitely.

Do I wish I had insisted to redo the analyses with the corrected simulation instead of relying on calibration tables? Sure, although easy to say that now.

But in the end the fundamental problem was that nobody realized the in-bin variation of the calibration samples was large compared to the difference in efficiencies between data and simulation until someone finally checked the results between the "corrected" and "calibrated" simulation and found a discrepancy. We all learned something there.

Keep making calibrations even more fine grained...
Staring at the Jun: the future of real-time analysis

Evolution of real-time analysis towards the LHCb upgrade...

Still just about room for a first level selective trigger

...and a potential second upgrade

But at $2 \cdot 10^{34}$, even that will no longer be possible

Why is real-time analysis here to stay?

Almost all bunch crossings will contain interesting signal, most proton-proton collisions will not Our triggers should select collisions, not bunch crossings

Requires ~offline-quality real-time reconstruction, detector alignment&calibration Requires access to "rest of event" information (tagging, isolation...) in real-time

Fundamentally because it is driven by physics, not technology.

Resource constraints facing real-time analysis at LHCb

CMS detector	LHC Run-2	HL-LHC Phase-2		LHCb Up
Peak $\langle PU \rangle$	60	140	200	
L1 accept rate (maximum)	100 kHz	500 kHz	750 kHz	30 N
Event Size	2.0 MB ^a	5.7 MB ^b	7.4 MB	130 k
Event Network throughput	1.6 Tb/s	23 Tb/s	44 Tb/s	~40 T
Event Network buffer (60 seconds)	12 TB	171 TB	333 TB	??
HLT accept rate	1 kHz	5 kHz	7.5 kHz	50-100 l
HLT computing power ^c	0.5 MHS06	4.5 MHS06	9.2 MHS06	??
Storage throughput	2.5 GB/s	31 GB/s	61 GB/s	5-10 GB
Storage capacity needed (1 day)	0.2 PB	2.7 PB	5.3 PB	??

LHCb upgrade already has to process ATLAS/CMS HL-LHC data volumes in the software trigger, on 1/10th of the budget and 5 years earlier. Feel free to ask me about Upgrade II...

grade LHCb Upgrade II

1Hz κB b/s kHz (?) B/s (?)

30 MHz 1.5 MB? ~500 Tb/s ?? ?? ?? 50 GB/s ? ??

Même si le défi peut sembler insurmontable, rappelez-vous...

...et sepultus resurrexit : certum est, quia impossibile – Tertullian

More data

79

2015 bugged tracking correction table

Ratios of charm cross-sections

LHCb hardware trigger efficiency

Charm background subtraction

Huge IP backgrounds in 2015

