logo

L’équipe RECEPT acueille Dorothea vom Bruch

Le projet RECEPT accueillent Dorothea vom Bruch, qui a obtenu sa these doctorale a Heidelberg Elle nous rejoins pour etudier l'universalité leptonique et pour travailler sur l'amelioration de la reconstruction de detecteur LHCb, particulièrement dans le cadre d'utilisation optimale des architectures paralleles de calcul. Vous pouvez trouver plus des infos sur la page des membres du projet!

L’équipe RECEPT s’élargit

Le projet RECEPT accueillent ses premieres chercheurs! Florian Reiss et Da Yu Tou ont fait leurs etudes master au Heidelberg et Manchester, et vont maintenant étudier l’universalité leptonique dans les désintégrations des b-mesons dans le cadre de leurs theses doctorales. En meme temps Renato Quagliani, qui a obtenu sa these doctoral en cadre d'un coututele des universitetes de Bristol et Orsay (Paris 11) nous rejoins pour etudier l'universalité leptonique et pour travailler sur l'amelioration de la reconstruction de detecteur LHCb. Vous pouvez trouver plus des infos sur la page des membres du projet!

Voir l'archive des nouvelles RECEPT

Dorothea vom Bruch joins RECEPT

The RECEPT project welcomes Dorothea vom Bruch, who joins us having done her PhD thesis at Heidelberg! Dorothea already studied both lepton universality and lepton flavour violation during her masters and PhD theses, and will now study lepton universality as well as the reconstruction of the upgraded LHCb detector, with a particular focus on optimizing our reconstruction software for highly parallel architectures. Read more about her on our members page!

Arrival of first RECEPT researchers

The RECEPT project welcomes its first researchers! Florian Reiss and Da Yu Tou join us as doctoral students having completed their Master's theses at the Universities of Heidelberg and Manchester, respectively, in order to study lepton universality in the decays of b-mesons. Renato Quagliani joins as a postdoctoral researcher having obtained a joint doctorate from the universities of Bristol and Orsay (Paris 11), and will study lepton universality as well as the reconstruction of the upgraded LHCb detector. Read more about them on our members page!

See the archive of RECEPT project news

Dorotea fom Bruh se pridružava RECEPT-u

Projekat RECEPT se povećava dolaskom Doroteje fom Bruh koja je doktorirala na Hajdelbergu, upravo na proučavanju univerzalnosti leptona i konzervaciji broja leptona u raspadima elementarnih čestica. Ona će sa nama proučavati univerzalnost leptona i raditi na unapredjenju sistema obrade podataka LHCb eksperimenta, posebno na optimalnom korišćenju visoko paralelnih kompjuterskih arhitektura. Možete naći njen profil na našoj stranici članova!

Prvi istraživači se priključuju projektu RECEPT

Projekat RECEPT dočekuje svoje prve istraživače! Florian Reiss i Da Yu Tou su magistrirali u Hajdelbergu i Mančesteru, a tokom doktorskih studija oni će proučavati univerzalnost leptona u raspadima b-mezona. Renato Quagliani je upravo odbranio doktorsku tezu na LHCb eksperimentu kao zajednički student univerziteta Brisola i Orseja (Pariz 11), i pridružuje nam se kao postdoktorant da bi proučavao univerzalnost leptona i radio na unapredjenju sistema obrade podataka LHCb eksperimenta. Možete naći njihove profile na našoj stranici članova!

Arhiv vesti projekta RECEPT

Le projet RECEPT porte sur des études de précision mettant à l’épreuve le Modèle standard de la physique des particules avec l’expérience LHCb au Cern. Depuis sa formulation dans les années 70, le Modèle standard de la physique des particules s’est avéré une description particulièrement réussie et prédictive de notre monde aux échelles subatomiques. Il permet de décrire la matière qui nous entoure en deux familles de six quarks et six leptons ainsi que leurs interactions en quatre bosons. À cela s’ajoute le boson BEH (Brout-Englert-Higgs), récemment découvert au LHC. Néanmoins, le Modèle standard est en contradiction fondamentale avec des théories non moins solides qui décrivent l'Univers. Par exemple, quand nous observons étoiles et galaxies, nous pouvons estimer leur masse de deux manières : en mesurant la quantité et le type de lumière qu'ils émettent ou en comparant leurs mouvements aux équations de la relativité générale. Le désaccord flagrant entre ces deux méthodes a permis de conclure à l'existence de "matière noire" non prévue par le Modèle standard des particules. Pour cette raison et d'autres contradictions, les physicien.ne.s estiment que le Modèle standard est inachevé et qu'une théorie plus fondamentale est nécessaire.

Afin d'apercevoir des signes d’une théorie plus fondamentale au-delà du Modèle standard, il est crucial d'en examiner les prédictions avec une précision toujours plus élevée. Parmi elles, "l’universalité leptonique" prévoit que les électrons, muons et taus, tous membres de la famille des leptons, doivent se comporter de la même manière et être produits en égale quantité lors de désintégrations. Le projet RECEPT va utiliser les données de l'expérience LHCb, basée au Grand collisionneur de hadrons (LHC) au Cern, en collaboration avec 69 instituts dans 16 pays. Pendant la première phase du projet, les chercheur.e.s analyseront les désintégrations de particules contenant un quark beau (b). En outre, les scientifiques du projet RECEPT joueront un rôle essentiel dans l’amélioration du détecteur de LHCb prévue pour la phase 2 du LHC, appelée "LHC haute luminosité", qui multipliera par 100 le volume des données. Compte-tenu de la taille des données à analyser et surtout à stocker, les chercheur.e.s développeront dans un deuxième temps un système permettant une analyse en temps réel. Cela leur permettra alors d’étudier les désintégrations des particules contenant un quark étrange (s). Les deux phases du projet RECEPT fourniront les mesures les plus précises jamais réalisées de l'universalité leptonique, ouvrant ainsi une fenêtre sur la physique au-delà du Modèle standard.

Le projet RECEPT est financé par l'Union Europeene dans le cadre de programme H2020 de Conseil Europeen de Recherche (ERC), dans le cadre de "grant agreement" numero 724777.

The Standard Model of particle physics is a remarkably successful and economical description of nature at microscopic scales. Six quarks, six leptons, four force carriers and the Higgs boson are all that makes up the Standard Model, some of whose predictions have been verified to better than one part in a billion. Nevertheless, the Standard Model is in fundamental contradiction with equally successful theories of the macroscopic universe. For example, when we observe stars and galaxies, we can estimate their mass in two ways : by measuring the amount and type of light which they emit, and by comparing their motions to the equations of General Relativity. When we do so, we find a significant disagreement in the two methods, indicating the existence of other “dark” matter not predicted in the Standard Model. Because of this and other contradictions, physicists believe that the Standard Model is incomplete, and that a more fundamental theory is needed.

In order to glimpse the more fundamental theory beyond the Standard Model, it is crucial to test the Standard Model’s predictions with ever higher precision. One of the most precise predictions is called “lepton universality” : that the six leptons couple with equal strength to the force carriers (photon and the W/Z bosons) of the electroweak force. RECEPT will use the LHCb experiment, based at the Large Hadron Collider at CERN, to make the world’s most precise tests of lepton universality in collaboration with 69 institutes across 16 countries. In the first phase of RECEPT, data collected with the existing LHCb detector will be used to measure lepton universality in the decays of particles containing a “bottom” quark. In addition, RECEPT’s researchers will play a crucial role in the upgrade of the LHCb detector, which will increase the data volume 100 times. Because this volume of data cannot be saved to disk, RECEPT’s researchers will develop a system allowing it to be analyzed in real-time, allowing the second phase of RECEPT to measure lepton universality in the decays of particles containing a “strange” quark. Together, the two phases of RECEPT will deliver the most precise measurements of lepton universality anywhere, either opening a window to physics beyond the Standard Model or else tightly limiting its properties.

The RECEPT project is financed by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No. 724777.

Standardni model fizike čestica je veoma uspešan i sažet opis prirode na mikroskopskim razmerama. Šest kvarkova, šest leptona, četiri nosioca sila i Higsov bozon opisuju u standardnom modelu ceo mikroskopski svet, a neka predvidjanja ovog modela su u opitima potrvdjena sa preciznošću od jednog milijarditog dela. Uprkos tome, standardni model u osnovi protivreči jednako uspešnim teorijama makroskopskog sveta. Na primer, kada posmatramo zvezde i sazveždja, možemo na dva načina utvrditi njihovu težinu: ili merenjem količine i boje svetlosti koju one zrače, ili uporedjivanjem njihovih putanja sa predvidjanjima teorije generalnog relativiteta. Medjutim, kada ta dva merenja težine uporedimo, ona se ne slažu! To nam ukazuje na protivrečnost standardnog modela i teorije generalnog relativiteta, iz čega fizičari najčešće zaključuju da standardni model nije kompletna teorija mikroskopskog sveta i da je treba dopuniti dodatnim česticama ili nosiocima dodatnih sila, na primer takozvanom “tamnom materijom”, koja bi trebalo da objasni opaženo pomeranje nebeskih tela.

Da bismo stekli uvid u tu opširniju odnosno fundamentalniju teoriju koja leži dalje od standardnog modela, važno je dalje ispitivati njegova predvidjanja. Jedno od najosnovnijih predvidjanja standardnog modela jeste takozvana “univerzalnost leptona”: da se šest leptona tog modela jednakom snagom vezuju za nosioce elektroslabe sile. Projekat RECEPT će koristiti detektor LHCb, koji je stvoren u saradnji 69 instituta nauka iz 16 zemalja sveta i čini jedan od četiri glavna eksperimenta vezana za takozvani “veliki sudarač hadrona” u CERN-u, sa ciljem da izvrši najpreciznija ispitivanja univerzalnosti leptona. U prvoj fazi projekta, podaci prikupljeni sa postojećim LHCb detektorom će biti iskorišćeni za ispitivanje univerzalnosti leptona u raspadu mezona koji u svome sastavu imaju takozvani “bottom” kvark. Istovremeno, RECEPT-ovi istraživači će razviti i unaprediti sistem obrade podataka LHCb eksperimenta, koji će nam omogućiti da obradimo 100 puta više podataka u sekundi i da, u drugoj fazi projekta, izmerimo i univerzalnosti leptona u raspadu mezona, koji u svome sastavu imaju takozvani “strange” kvark. Ove dve faze RECEPT-a će nam omogućiti da ostvarimo najpreciznija merenja univerzalnosti leptona na svetu, i da možda sagledamo prve nagoveštaje neke nove fizike na ivicama maglovitog pejzaža standardnog modela.

Projekat RECEPT finansira Evropska zajednica u okviru programa H2020 Evropskog naučnog veća (ERC), broj projekta 724777.

    Vladimir Gligorov (PI) : I spent my student years being bothered by quantum nonlocality, but eventually discovered that not being able to do maths would prove less of a problem if I became an experimental physicist. Now I divide my time between thinking about the myriad contradictions in our theories of the microscopic and macroscopic universe, and building real-time analysis systems to help LHCb probe these contradictions to ever higher precisions. I am also involved in the International Masterclass programme and regularly work with students at the Petnica Science Centre, trying to make the next generation as excited about fundamental science as I am. Life is too short for most social media, but I do tweet @particleist --- not necessarily about science.

    Florian Reiss : I'm a PhD student from Germany. Before coming to Paris I studied in Heidelberg. During my Bachelor thesis I worked in the Mu3e group looking for decays violating lepton number conservation. For my Master thesis I joined the LHCb collaboration, where I contributed to the spectroscopy subgroup. After graduating in 2017 I became a member of the LHCb group at the LPNHE to work on tests of lepton universality.

    Da Yu Tou : Hi, I am a doctoral student from Malaysia who graduated with Master of Physics degree from University of Manchester in 2017. My current physics interest is in test of lepton non-universality, specifically in B->K*ll. Also, I am looking into using GPU computing and neural networks to improve the performance of event reconstruction software in LHCb. My list of publication and presentation is empty but I will have a few in 3 years. Stay tuned!

    Renato Quagliani : I am a postdoc researcher from Italy. I got a double PhD degree from Bristol University and Paris Sud University and during that time I spent most of my time surfing through the LHCb software, rewriting, debugging and optimising the track reconstruction for the LHCb upgrade as well as analysing data produced by the LHCb experiment. All experimental physicists aim at working on searches of New Physics and place the bricks to allow theorists and experimentalist to move the mankind's knowledge one step further. This is what RECEPT does and why I am happy to be part of it.

    Dorothea vom Bruch I first got interested in lepton universality during my Master's degree at UBC and TRIUMF in Vancouver, studying the decay ratio of pions to electrons and muons. Staying in the field of lepton physics, I continued with a PhD in Heidelberg and Mainz working on the Mu3e experiment, which is aimed to search for lepton flavour violation. I was mainly involved in developing and implementing an online signal selection process on GPUs to reduce the data rate of the experiment, and in characterizing a prototype of the high-voltage monolithic active pixel sensors envisaged for the spectrometer. Still being enthusiastic about lepton flavour, I am now part of the RECEPT project as a postdoc, working on track reconstruction on GPUs and studying lepton universality.

Recent papers, presentations, and proceedings

See full archive of papers, presentations, and proceedings

Recent pedagogical resources

See full archive of pedagogical resources

Go to internal resources for project members

Return to the LPNHE LHCb group webpage